Do laboratório à indústria: medição rápida e de baixo custo de emulsões em tempo real
DOI:
https://doi.org/10.55892/jrg.v8i19.2792Palavras-chave:
Microfluídica, Optofluídica, Emulsões, Caracterização Óptica, Medições em Tempo RealResumo
Este trabalho apresenta uma breve descrição do desenvolvimento de um dispositivo optofluídico de baixo custo para caracterização e monitoramento em tempo real de emulsões água-em-óleo. O sistema combina microcanais e sensores ópticos, o que permite medições rápidas, precisas e não invasivas dessas misturas numa escala reduzida de tamanho e de estabilidade, que se observa em microgotas, o que supera as limitações de métodos convencionais baseados em análises off-line de microscopia. Simulações computacionais e validações experimentais confirmaram a viabilidade do protótipo, o que demonstra uma correlação satisfatória entre os dados ópticos e os obtidos por microscopia. A proposta oferece potencial aplicação em áreas como controle de qualidade industrial, diagnósticos biomédicos e engenharia de materiais.
Downloads
Referências
SANTOS, Rômulo Ferreira dos. Integração de sistemas óptico e microfluídico para caracterização e monitoramento em tempo real de emulsões de água em óleo. 2025. 150 f. Dissertação (Mestrado) – Faculdade de Tecnologia, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, 2025.
HOSSAIN K.M.Z.; DEEMING, L; EDLER, K.J. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv, v. 11, n. 62, 2021. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC9044626/ Acesso em: 17/11/2025.
ZIA, A. et al. Advances and Opportunities of Oil-in-Oil Emulsions. ACS Appl Mater Interfaces, v. 12, n. 35, 2020. Disponível em: https://pubs.acs.org/doi/10.1021/acsami.0c07993 Acesso em: 17/11/2025.
RAWAS-QALAJI, M. et al. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol, v. 28, n. 1, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36592376/ Acesso em: 17/11/2025.
ROSTAMABADI, H. et al. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci, v. 290, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0001868621000257?via%3Dihub Acesso em: 17/11/2025.
ZUO, Y., et al. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing. Micromachines (Basel), v. 9, n. 4, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30424097/ Acesso em: 16/11/2025.
MARZE, S.; NGUYEN, H.T.; MARQUIS, M. Manipulating and studying triglyceride droplets in microfluidic devices. Biochimie, v. 169, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0300908419303815 Acesso em: 17/11/2025.
JONÁŠ, A. et al. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Appl Mater Interfaces, v. 13, n. 43, 2021. Disponível em: https://pubs.acs.org/doi/10.1021/acsami.1c11936 Acesso em: 17/11/2025.
LI, S. et al. Controllable Formation and Real-Time Characterization of Single Microdroplets Using Optical Tweezers. Micromachines (Basel), v. 13, n. 10, 2022. Disponível em: https://www.mdpi.com/2072-666X/13/10/1693 Acesso em: 17/11/2025.
SONG, S.; LE-CLECH, P.; SHEN, Y. Microscale fluid and particle dynamics in filtration processes in water treatment: A review. Water Res, v. 233, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0043135423001811 Acesso em: 17/11/2025.
ROSATI, R. et al. Effective detection of spatio-temporal carrier dynamics by carrier capture. Journal of Physics: Condensed Matter, v. 31, n. 28, 2019. Disponível em: https://cris.uni-muenster.de/portal/en/publication/73799683 Acesso em: 17/11/2025.
ZHANG, Tianlong et al. Focusing of sub-micrometer particles in microfluidic devices. Lab on a chip, v. 20, n. 1, 2020. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2020/lc/c9lc00785g Acesso em: 17/11/2025.
KUMAR, S. et al. Self- organized spreading of droplets to fluid toroids. Journal Colloid Interface Sci, v. 578, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0021979720307621 Acesso em: 17/11/2025.
CORNELIS, B. et al. Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry. Opt. Express, v. 26, n. 11, 2018. Disponível em: https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-11-14329 Acesso em: 17/11/2025.
KHONINA S. N.; KAZANSKIY, N. L.; BUTT, M. A. Optical Fibre-Based Sensors-An Assessment of Current Innovations. Biosensors (Basel), v. 13, n. 9, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29877473/ Acesso em: 18/11/2025.
BHAT S.; BLUNCK, R. Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans, v. 50, n. 5, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36282004/ Acesso em: 18/11/2025.
MARIANO, V. et al. Brain Stroke Classification via Machine Learning Algorithms Trained with a Linearized Scattering Operator. Diagnostics (Basel), v. 13, n. 1, 2022. Disponível em: https://www.mdpi.com/2075-4418/13/1/23 Acesso em: 18/11/2025.
DASGUPTA, I. et al. Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature. Bioengineering (Basel), v. 11, n. 5, 2024. Disponível em: https://www.mdpi.com/2306-5354/11/5/476 Acesso em: 18/11/2025.
IQBAL M. J. et al. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int, v. 22, n. 354, 2022. Disponível em: https://cancerci.biomedcentral.com/articles/10.1186/s12935-022-02777-7 Acesso em: 18/11/2025.
Müller M, Fisch P, Molnar M, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, v. 108, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493119319216 Acesso em: 18/11/2025.
LI, Z. et al. Accelerated Log-Regularized Convolutional Transform Learning and Its Convergence Guarantee. IEEE Trans Cybern, v. 52, n. 10, 2021. Disponível em: https://ieeexplore.ieee.org/document/9407335 Acesso em: 18/11/2025.
BURATTO, W. G. et al. A Review of Automation and Sensors: Parameter Control of Thermal Treatments for Electrical Power Generation. Sensors (Basel), v. 24, n. 3, 2024. Disponível em: https://www.mdpi.com/1424-8220/24/3/967 Acesso em: 18/11/2025.
HETTIARACHCHI, K. et al. Microscale Purification with Direct Charged Aerosol Detector Quantitation Using Selective Online One- or Two-Dimensional Liquid Chromatography. Anal Chem, v. 94, n. 23, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.analchem.2c00750 Acesso em: 18/11/2025.
PAIÈ, P. et al. Microfluidic Based Optical Microscopes on Chip. Cytometry A, v. 93, n. 10, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30211977/ Acesso em: 18/11/2025.
PAGÁN, N. M. Et al. Physicochemical Characterization of Asphaltenes Using Microfluidic Analysis. Chem Rev, v. 122, n. 7, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00897 Acesso em 18/11/2025.
KOTSANOPOULOS, K. V.; ARVANITOYANNIS, I. S. The Role of Auditing, Food Safety, and Food Quality Standards in the Food Industry: A Review. Compr Rev Food Sci Food Saf, v. 16, n. 5, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33371608/ Acesso em 18/11/2025.
CHUNG, J. et al. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron, v. 67, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0956566314006277 Acesso em 18/11/2025.
ZHAO, X. Tunable optofluidic microbubble lens. Opt Express, v. 30, n. 5, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35299575/ Acesso em 18/11/2025.
ABDULLAEV, S. S. et al. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis. Talanta, v. 273, 2024. https://www.sciencedirect.com/science/article/abs/pii/S0039914024002753 Disponível em: Acesso em 18/11/2025.
MARIUTA, D. et al. et al. Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines (Basel), v. 11, n. 7, 2020. Disponível em: https://www.mdpi.com/2072-666X/11/7/673 Acesso em 18/11/2025.
RACKUS, D. G.; RIEDEL-KRUSE, I. H.; PAMME, N. Learning on a chip: Microfluidics for formal and informal science education. Biomicrofluidics, v. 13, n. 4, 2019. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC6697029/ Acesso em 18/11/2025.
QIU, Z; PIYAWATTANAMETHA, W. MEMS Actuators for Optical Microendoscopy. Micromachines (Basel), v. 10, n. 2, 2019. Disponível em: https://www.mdpi.com/2072-666X/10/2/85 Acesso em 18/11/2025.
TRINH, T. N. D. et al. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel), v. 16, n. 7, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37513850/ Acesso em 18/11/2025.
LIU, C. et al. External-field-induced directional droplet transport: A review. Adv Colloid Interface Sci, v. 295, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0001868621001433 Acesso em 18/11/2025.
BURNSIDE, S. B. et al. Simulations of surface acoustic wave interactions on a sessile droplet using a three-dimensional multiphase lattice Boltzmann model. Phys Rev E, v. 104, n. 4, 2021. Disponível em: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.045301 Acesso em 18/11/2025.
COLUCCIO, M. L. et al. Microfluidic platforms for cell cultures and investigations, Microelectronic Engineering, v. 208, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S016793171930019X Acesso em 18/11/2025.
MOMENIAZANDARIANI, Shima. Chemical synthesis with microfluidics – a review. Elveflow, [s.d.]. Disponível em: https://elveflow.com/microfluidic-reviews/chemical-synthesis-with-microfluidics-review/ Acesso em 18/11/2025.
SCHAAF, C.; RÜHLE, F.; STARK, H. A flowing pair of particles in inertial microfluidics. Soft Matter, 2019. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2019/sm/c8sm02476f Acesso em 18/11/2025.
ORBAY, S.; SANYAL, A. Molecularly Imprinted Polymeric Particles Created Using Droplet-Based Microfluidics: Preparation and Applications. Micromachines (Basel), v. 14, n. 4, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/4/763. Acesso em 18/11/2025.
GURKAN, U. A. et al. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies. Lab Chip, v. 24, n. 7, 2024. Disponível em: https://encurtador.com.br/gHlF Acesso em 18/11/2025.
KAVVAS, M. L.; ERCAN, A. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Sci Rep, v.12, n. 1, 2022. Disponível em: https://www.nature.com/articles/s41598-022-20911-3 Acesso em 18/11/2025.
JIANG, J. et al. Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets. ACS Appl Mater Interfaces, v. 9, n. 7, 2022. Disponível em: https://www.nature.com/articles/s41598-022-20911-3 Acesso em 18/11/2025.
SOTOUDEGAN, M. S. Et al. Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices. Lab Chip, v. 19, n. 22, 2019. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2019/lc/c9lc00822e Acesso em 18/11/2025.
DE LOS SANTOS-RAMIREZ, J. M. et al. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. Analyst. v. 149, n. 14, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00538d Acesso em 18/11/2025.
FERNÁNDEZ-MATEO, R. et al. Concentration-polarization electroosmosis for particle fractionation. Lab Chip, v. 24, n. 11, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00081a Acesso em 18/11/2025.
LI, T. et al. Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers. Biosensors (Basel), v. 14, n. 9, 2024. Disponível em: https://www.mdpi.com/2079-6374/14/9/408 Acesso em 18/11/2025.
HAN, Y. et al. Modern microelectronics and microfluidics on microneedles. Analyst, v. 148, n. 19, 2023. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/an/d3an01045g Acesso em 18/11/2025.
PARSLEY, N. C.; SMYTHERS, A. L.; Hicks, L. M. Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements. Front Cell Infect Microbiol, v. 10, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33042872/ Acesso em 18/11/2025.
ZHEN, W.; JIANG, X. Synthesizing Living Tissues with Microfluidics. Acc Chem Res, v. 51, n. 12, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30456942/ Acesso em 18/11/2025.
VAN LOO, B. et al. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun, v. 14, n. 1, 2023. Disponível em: https://www.nature.com/articles/s41467-023-42297-0 Acesso em 18/11/2025.
VLADISALJEVIĆ, G. T. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. Micromachines (Basel), v. 15, n. 8, 2024. Disponível em: https://www.mdpi.com/2072-666X/15/8/971 Acesso em 18/11/2025.
WANG, X. et al. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res, v. 9, n. 1, 2022. Disponível em: https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-022-00374-3 Acesso em 18/11/2025.
SIDDIQUI, S. A. et.al. Implementing fermentation technology for comprehensive valorisation of seafood processing by- products: A critical review on recovering valuable nutrients and enhancing utilisation. Crit Rev Food Sci Nutr, v. 65, n. 5, 2023. Disponível em: https://www.tandfonline.com/doi/full/10.1080/10408398.2023.2286623 Acesso em 18/11/2025.
YAN, C. et al. Microencapsulation for Food Applications: A Review. ACS Appl Bio Mater, v. 5, n. 12, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acsabm.2c00673 Acesso em 18/11/2025.
FILIPPIDOU M. K.; CHATZANDROULIS, S. Microfluidic Devices for Heavy Metal Ions Detection: A Review. Micromachines (Basel), v. 14, n. 8, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/8/1520 Acesso em 18/11/2025.
GUPTA, P.; TOKSHA B.; RAHAMAN, M. A. Critical Review on Hydrogen Based Fuel Cell Technology and Applications. Chem Rec, v. 24, n. 1, 2023 Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/tcr.202300295 Acesso em 18/11/2025.
ZHAI, K. The changing landscape of semiconductor manufacturing: why the health sector should care. Front Health Serv, v. 3, 2023. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10292744/ Acesso em 18/11/2025.
DONG, Y. et al. Formation of Droplets of Shear-Thinning Non- Newtonian Fluids in Asymmetrical Parallelized Microchannels. Langmuir, v. 39, n. 6, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.2c02736 Acesso em 18/11/2025.
PATTANAYAK, P. et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluidics, v. 25, n. 12, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34720789/ Acesso em 18/11/2025.
LIU, D. et al. Single-cell droplet microfluidics for biomedical applications. Analyst, v. 147, n. 11, 2022. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2022/an/d1an02321g Acesso em 18/11/2025.
OZCELIK, D. et al. Optofluidic bioanalysis: fundamentals and applications. Nanophotonics, v. 6, n. 4, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29201591/ Acesso em 18/11/2025.
LIAO, J. et al. Mirrored transformation optics. Opt Lett, v. 49, n. 4, 2024. Disponível em: https://opg.optica.org/viewmedia.cfm?r=1&rwjcode=ol&uri=ol-49-4-907&html=true Acesso em 18/11/2025.
ZIEBEHL, A. et al. Parametric multiphysics study of focus-variable silicone lenses. Appl Opt, v. 62, n. 30, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38038081/ Acesso em 18/11/2025.
KANG, M. et al. A Molecular-Switch-Embedded Organic Photodiode for Capturing Images against Strong Backlight. Adv Mater, v. 34, n. 17, 2022. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202200526 Acesso em 18/11/2025.
LIANG, L. et al. Label-free single-cell analysis in microdroplets using a light- scattering-based optofluidic chip. Biosens Bioelectron, v. 253, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0956566324001532 Acesso em 18/11/2025.
AVCI, M. B.; YASAR, S. D.; CETIN, A. E. An optofluidic platform for cell-counting applications. Anal Methods, v. 15, n. 18, 2023. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/ay/d3ay00344b Acesso em 18/11/2025.
VILLARREAL-LUCIO, D. S. et al. Molecularly imprinted polymers for environmental adsorption applications. Environ Sci Pollut Res Int, v. 29, n. 60, 2022 Disponível em: https://link.springer.com/article/10.1007/s11356-022-24025-1 Acesso em 18/11/2025.
WANG, Z. et al. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. Small Methods, v. 7, n. 12, 2023. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202300042 Acesso em 18/11/2025.
ABEDI, S. et al. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence. Journal Colloid Interface Sci, v. 533, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0021979718309652 Acesso em 18/11/2025.
NAGLIČ, P. et al. Optical properties of PlatSil SiliGlass tissue-mimicking phantoms. Biomed Opt Express, v. 11, n. 8, 2020 Disponível em: Acesso em 18/11/2025.
HUANG, K. et al. Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles. Adv Mater, v. 34, n. 14, 2022. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202107962 Acesso em 19/11/2025.
CHEN, R. et al. Patterning an Erosion-Free Polymeric Semiconductor Channel for Reliable All-Photolithography Organic Electronics. Journal Phys Chem Lett, v. 13, n. 33, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jpclett.2c01982 Acesso em 19/11/2025.
JANE, F. et al. Embedding of Ultrathin Chips in Highly Flexible, Photosensitive Solder Mask Resist. Micromachines (Basel), v. 12, n. 8, 2021. Disponível em: https://www.mdpi.com/2072-666X/12/8/856 Acesso em 19/11/2025.
SHAHBAZ, M.; BUTT M. A.; PIRAMIDOWICZ, R. Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing. Micromachines (Basel), v. 14, n. 8, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37630173/ Acesso em 19/11/2025.
XU, Z. et al. An investigation of methods to enhance adhesion of conductive layer and dielectric substrate for additive manufacturing of electronics. Sci Rep, v. 14, n. 1, 2024. Disponível em: https://www.nature.com/articles/s41598-024-61327-5 Acesso em 20/11/2025.
JINDAL, V; SUGUNAKAR, V; GHOSH, S. Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing. Rev Sci Instrum, v. 93, n. 2, 2022. Disponível em: https://encurtador.com.br/pjWx Acesso em 20/11/2025.
MÁRTIL DE LA PLAZA, Ignacio. Microelectrónica: la história de la mayor revolución silenciosa del siglo XX. Madrid: Universidad Complutense, Ediciones Complutense, 2018. 179p.
KOSHELEV, A. et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. Opt Lett, v. 41, n. 15, 2016. Disponível em: https://opg.optica.org/ol/abstract.cfm?uri=ol-41-15-3423 Acesso em 21/11/2025.
NIKON BUSINESS. Immersion lithography technology supports leading-edge semiconductor production. [s.l.]: Nikon, [s.d.]. Disponível em: https://www.nikon.com/business/semi/technology/story04.html Acesso em 21/11/2025.
ZHAO, R. et al. Machine learning in electron beam lithography to boost photoresist formulation design for high-resolution patterning. Nanoscale, v. 16, n. 8, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr04819e Acesso em 21/11/2025
BAEK, D. et al. Nanotechnology for Bioapplications. In: Lithography Technology for Micro- and Nanofabrication. Singapure: Springer, 2021. p. 217-233.
CHIRCOV, C; GRUMEZESCU, A. M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines (Basel), v. 13, n. 2, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35208289/ Acesso em 21/11/2025.
SCIBERRAS, T. et al. Thermo-Mechanical Fluid- Structure Interaction Numerical Modelling and Experimental Validation of MEMS Electrothermal Actuators for Aqueous Biomedical Applications. Micromachines (Basel), v. 14, n. 6, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/6/1264 Acesso em 21/11/2025.
BHUSHAN, Bharat. Encyclopedia of Nanotechnology, v. 1. Dordrecht, The Netherlands: Springer, 2012. 2.868p.
PARK, S. Y. et al. Patterning Quantum Dots via Photolithography: A Review. Adv Mater, v. 35, n. 41, Disponível em: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202300546 Acesso em 21/11/2025.
SMALLWOOD, D. C. et al. Methods for latent image simulations in photolithography with a polychromatic light attenuation equation for fabricating VIAs in 2.5D and 3D advanced packaging architectures. Microsyst Nanoeng, v. 7, n. 39, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34567753/ Acesso em 21/11/2025.
ZHANG, S. et al. Chemically Amplified Molecular Glass Photoresist Regulated by 2-Aminoanthracene Additive for Electron Beam Lithography and Extreme Ultraviolet Lithography. ACS Omega, v. 8, n. 30, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acsomega.2c07711 Acesso em 21/11/2025.
LU, H. et al. Characterisation of engineered defects in extreme ultraviolet mirror substrates using lab-scale extreme ultraviolet reflection ptychography. Ultramicroscopy, v. 249, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304399123000372 Acesso em 21/11/2025.
SERRANO, D. R. et al. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics, v. 15, n. 2, 2023. Disponível em: https://www.mdpi.com/1999-4923/15/2/313 Acesso em 21/11/2025.
SIOMA, M. 3D printed electronics with nanomaterials. Nanoscale, v. 15, n. 12, 2023; Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr06771d Acesso em 21/11/2025.
Madhu NR, Erfani H, Jadoun S, Amir M, Thiagarajan Y, Chauhan NPS. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review. International Journal Adv Manuf Technol, v. 122, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-022-10048-y Acesso em 21/11/2025.
LUO, C. et al. Bonding widths of Deposited Polymer Strands in Additive Manufacturing. Materials (Basel), v. 14, n. 4, 2021. Disponível em: https://www.mdpi.com/1996-1944/14/4/871 Acesso em 21/11/2025.
SIRBUBALO, M. et al. 3D Printing — A “Touch-Button” Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics, v. 13, n. 7, 2021; Disponível em: https://doi.org/10.3390/pharmaceutics13070924 Acesso em 21/11/2025.
ZHANG, P. et al. Development of multiple structured extended-release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing. International Journal Pharm, v. 653, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S037851732400139X Acesso em 21/11/2025.
PRZEKOP, R. E. et al. Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements. Applied Sciences, v. 13, n. 13, 2023; Disponível em: https://doi.org/10.3390/app13137393 Acesso em 21/11/2025.
DEMIR, E.; DUYGUN, İ. K.; BEDELOĞLU, A. The Mechanical Properties of 3D-Printed Polylactic Acid/Polyethylene Terephthalate Glycol Multi-Material Structures Manufactured by Material Extrusion. 3D Print Addit Manuf, v. 11, n. 1, 2024. Disponível em: Acesso em 21/11/2025.
CHO, Y. et al. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape. Micromachines (Basel), v.14, n. 1, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/1/223 Acesso em 21/11/2025.
NTONE, E. et. al. The emulsifying ability of oleosomes and their interfacial molecules. Colloids Surfaces B: Biointerfaces, v. 229, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0927776523003545 Acesso em 21/11/2025.
SHARMA, T. et al. Investigating the Vapor-Phase Adsorption of Aroma Molecules on the Water-Vapor Interface using Molecular Dynamics Simulations. Langmuir, v. 39, n. 49, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02531 Acesso em 21/11/2025.
LI, Y. et al. A Pickering emulsion stabilized by Chitosan-g- Poly(N-vinylcaprolactam) microgels: Interface formation, stability and stimuli-responsiveness. Carbohydr Polym, v. 332, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0144861724001747 Acesso em 21/11/2025.
JIANG, T. et al. Effective colloidal emulsion droplet regulation in flow- focusing glass capillary microfluidic device via collection tube variation. RSC Adv, v. 14, n. 5, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/ra/d3ra08561a Acesso em 21/11/2025.
PETRUZZELLIS, I. et al. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. Micromachines (Basel), v. 15, n. 9, 2024. Disponível em: https://www.mdpi.com/2072-666X/15/9/1135 Acesso em 21/11/2025.
HENGOJU, S. et al. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens Bioelectron, v. 200, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0956566321009477 Acesso em 21/11/2025.
SCHIANTI, J. N. et al. Real Time Water-In-Oil Emulsion Size Measurement in Optofluidic Channels. Sensors (Basel), v. 22, n. 13, 2022. Disponível em: https://www.mdpi.com/1424-8220/22/13/4999 Acesso em 21/11/2025.
VILA-PLANAS, J. et al. Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, v. 6, 2011. Disponível em: https://www.nature.com/articles/nprot.2011.383 Acesso em 21/11/2025.
SUN, X. et al. Small All-Range Lidar for Asteroid and Comet Core Missions. Sensors (Basel), v. 21, n. 9, 2021. Disponível em: https://www.mdpi.com/1424-8220/21/9/3081 Acesso em 21/11/2025.
DANNHAUSER, D. et al. Optical signature of erythrocytes by light scattering in microfluidic flows. Lab Chip, v. 15, n. 16, 2015. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2015/lc/c5lc00525f Acesso em 21/11/2025.
SONG, J. et al. Droplet Navigation by Photothermal Pumping in an Optofluidic System. Langmuir, v.38, n. 37, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.2c02108 Acesso em 21/11/2025.
WEI, B. et al. Monolithic 3D phase profile formation in glass for spatial and temporal control of optical waves. Opt Express, v. 30, n. 14, 2022. Disponível em: https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-14-24822 Acesso em 21/11/2025.
GHAZNAVI, A.; XU, J.; Hara, S. A. A Non-Sacrificial 3D Printing Process for Fabricating Integrated Micro/Mesoscale Molds. Micromachines (Basel), v. 14, n. 7, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/7/1363 Acesso em 21/11/2025.
Downloads
Publicado
Como Citar
Edição
Seção
ARK
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.





































