Do laboratório à indústria: medição rápida e de baixo custo de emulsões em tempo real

Autores

DOI:

https://doi.org/10.55892/jrg.v8i19.2792

Palavras-chave:

Microfluídica, Optofluídica, Emulsões, Caracterização Óptica, Medições em Tempo Real

Resumo

Este trabalho apresenta uma breve descrição do desenvolvimento de um dispositivo optofluídico de baixo custo para caracterização e monitoramento em tempo real de emulsões água-em-óleo. O sistema combina microcanais e sensores ópticos, o que permite medições rápidas, precisas e não invasivas dessas misturas numa escala reduzida de tamanho e de estabilidade, que se observa em microgotas, o que supera as limitações de métodos convencionais baseados em análises off-line de microscopia. Simulações computacionais e validações experimentais confirmaram a viabilidade do protótipo, o que demonstra uma correlação satisfatória entre os dados ópticos e os obtidos por microscopia. A proposta oferece potencial aplicação em áreas como controle de qualidade industrial, diagnósticos biomédicos e engenharia de materiais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rômulo Ferreira dos Santos, Universidade de Brasília (UnB), DF, Brasil

Doutor em Gestão de Projetos de Tecnologia da Informação pela Universidad Internacional Iberoamericana (UNINI) e aluno regular do Doutorado Acadêmico em Engenharia Elétrica na Faculdade de Tecnologia da Universidade de Brasília (UnB), DF, Brasil.

Paulo Cesar Rodrigues Borges, Centro Universitário IESB, DF, Brasil

Doutor em Ciência da Informação pela Universidade de Brasília (UnB), professor do mestrado profissional do Centro Universitário IESB, Brasília, DF, Brasil e professor dos cursos de tecnologia do Uniprocessus, Águas Claras, DF, Brasil.

Referências

SANTOS, Rômulo Ferreira dos. Integração de sistemas óptico e microfluídico para caracterização e monitoramento em tempo real de emulsões de água em óleo. 2025. 150 f. Dissertação (Mestrado) – Faculdade de Tecnologia, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, 2025.

HOSSAIN K.M.Z.; DEEMING, L; EDLER, K.J. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC Adv, v. 11, n. 62, 2021. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC9044626/ Acesso em: 17/11/2025.

ZIA, A. et al. Advances and Opportunities of Oil-in-Oil Emulsions. ACS Appl Mater Interfaces, v. 12, n. 35, 2020. Disponível em: https://pubs.acs.org/doi/10.1021/acsami.0c07993 Acesso em: 17/11/2025.

RAWAS-QALAJI, M. et al. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol, v. 28, n. 1, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36592376/ Acesso em: 17/11/2025.

ROSTAMABADI, H. et al. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci, v. 290, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0001868621000257?via%3Dihub Acesso em: 17/11/2025.

ZUO, Y., et al. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing. Micromachines (Basel), v. 9, n. 4, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30424097/ Acesso em: 16/11/2025.

MARZE, S.; NGUYEN, H.T.; MARQUIS, M. Manipulating and studying triglyceride droplets in microfluidic devices. Biochimie, v. 169, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0300908419303815 Acesso em: 17/11/2025.

JONÁŠ, A. et al. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Appl Mater Interfaces, v. 13, n. 43, 2021. Disponível em: https://pubs.acs.org/doi/10.1021/acsami.1c11936 Acesso em: 17/11/2025.

LI, S. et al. Controllable Formation and Real-Time Characterization of Single Microdroplets Using Optical Tweezers. Micromachines (Basel), v. 13, n. 10, 2022. Disponível em: https://www.mdpi.com/2072-666X/13/10/1693 Acesso em: 17/11/2025.

SONG, S.; LE-CLECH, P.; SHEN, Y. Microscale fluid and particle dynamics in filtration processes in water treatment: A review. Water Res, v. 233, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0043135423001811 Acesso em: 17/11/2025.

ROSATI, R. et al. Effective detection of spatio-temporal carrier dynamics by carrier capture. Journal of Physics: Condensed Matter, v. 31, n. 28, 2019. Disponível em: https://cris.uni-muenster.de/portal/en/publication/73799683 Acesso em: 17/11/2025.

ZHANG, Tianlong et al. Focusing of sub-micrometer particles in microfluidic devices. Lab on a chip, v. 20, n. 1, 2020. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2020/lc/c9lc00785g Acesso em: 17/11/2025.

KUMAR, S. et al. Self- organized spreading of droplets to fluid toroids. Journal Colloid Interface Sci, v. 578, 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0021979720307621 Acesso em: 17/11/2025.

CORNELIS, B. et al. Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry. Opt. Express, v. 26, n. 11, 2018. Disponível em: https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-11-14329 Acesso em: 17/11/2025.

KHONINA S. N.; KAZANSKIY, N. L.; BUTT, M. A. Optical Fibre-Based Sensors-An Assessment of Current Innovations. Biosensors (Basel), v. 13, n. 9, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29877473/ Acesso em: 18/11/2025.

BHAT S.; BLUNCK, R. Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans, v. 50, n. 5, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36282004/ Acesso em: 18/11/2025.

MARIANO, V. et al. Brain Stroke Classification via Machine Learning Algorithms Trained with a Linearized Scattering Operator. Diagnostics (Basel), v. 13, n. 1, 2022. Disponível em: https://www.mdpi.com/2075-4418/13/1/23 Acesso em: 18/11/2025.

DASGUPTA, I. et al. Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature. Bioengineering (Basel), v. 11, n. 5, 2024. Disponível em: https://www.mdpi.com/2306-5354/11/5/476 Acesso em: 18/11/2025.

IQBAL M. J. et al. Biosensing chips for cancer diagnosis and treatment: a new wave towards clinical innovation. Cancer Cell Int, v. 22, n. 354, 2022. Disponível em: https://cancerci.biomedcentral.com/articles/10.1186/s12935-022-02777-7 Acesso em: 18/11/2025.

Müller M, Fisch P, Molnar M, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Mater Sci Eng C Mater Biol Appl, v. 108, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0928493119319216 Acesso em: 18/11/2025.

LI, Z. et al. Accelerated Log-Regularized Convolutional Transform Learning and Its Convergence Guarantee. IEEE Trans Cybern, v. 52, n. 10, 2021. Disponível em: https://ieeexplore.ieee.org/document/9407335 Acesso em: 18/11/2025.

BURATTO, W. G. et al. A Review of Automation and Sensors: Parameter Control of Thermal Treatments for Electrical Power Generation. Sensors (Basel), v. 24, n. 3, 2024. Disponível em: https://www.mdpi.com/1424-8220/24/3/967 Acesso em: 18/11/2025.

HETTIARACHCHI, K. et al. Microscale Purification with Direct Charged Aerosol Detector Quantitation Using Selective Online One- or Two-Dimensional Liquid Chromatography. Anal Chem, v. 94, n. 23, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.analchem.2c00750 Acesso em: 18/11/2025.

PAIÈ, P. et al. Microfluidic Based Optical Microscopes on Chip. Cytometry A, v. 93, n. 10, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30211977/ Acesso em: 18/11/2025.

PAGÁN, N. M. Et al. Physicochemical Characterization of Asphaltenes Using Microfluidic Analysis. Chem Rev, v. 122, n. 7, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00897 Acesso em 18/11/2025.

KOTSANOPOULOS, K. V.; ARVANITOYANNIS, I. S. The Role of Auditing, Food Safety, and Food Quality Standards in the Food Industry: A Review. Compr Rev Food Sci Food Saf, v. 16, n. 5, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33371608/ Acesso em 18/11/2025.

CHUNG, J. et al. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens Bioelectron, v. 67, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0956566314006277 Acesso em 18/11/2025.

ZHAO, X. Tunable optofluidic microbubble lens. Opt Express, v. 30, n. 5, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35299575/ Acesso em 18/11/2025.

ABDULLAEV, S. S. et al. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis. Talanta, v. 273, 2024. https://www.sciencedirect.com/science/article/abs/pii/S0039914024002753 Disponível em: Acesso em 18/11/2025.

MARIUTA, D. et al. et al. Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines (Basel), v. 11, n. 7, 2020. Disponível em: https://www.mdpi.com/2072-666X/11/7/673 Acesso em 18/11/2025.

RACKUS, D. G.; RIEDEL-KRUSE, I. H.; PAMME, N. Learning on a chip: Microfluidics for formal and informal science education. Biomicrofluidics, v. 13, n. 4, 2019. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC6697029/ Acesso em 18/11/2025.

QIU, Z; PIYAWATTANAMETHA, W. MEMS Actuators for Optical Microendoscopy. Micromachines (Basel), v. 10, n. 2, 2019. Disponível em: https://www.mdpi.com/2072-666X/10/2/85 Acesso em 18/11/2025.

TRINH, T. N. D. et al. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel), v. 16, n. 7, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37513850/ Acesso em 18/11/2025.

LIU, C. et al. External-field-induced directional droplet transport: A review. Adv Colloid Interface Sci, v. 295, 2021. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0001868621001433 Acesso em 18/11/2025.

BURNSIDE, S. B. et al. Simulations of surface acoustic wave interactions on a sessile droplet using a three-dimensional multiphase lattice Boltzmann model. Phys Rev E, v. 104, n. 4, 2021. Disponível em: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.104.045301 Acesso em 18/11/2025.

COLUCCIO, M. L. et al. Microfluidic platforms for cell cultures and investigations, Microelectronic Engineering, v. 208, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S016793171930019X Acesso em 18/11/2025.

MOMENIAZANDARIANI, Shima. Chemical synthesis with microfluidics – a review. Elveflow, [s.d.]. Disponível em: https://elveflow.com/microfluidic-reviews/chemical-synthesis-with-microfluidics-review/ Acesso em 18/11/2025.

SCHAAF, C.; RÜHLE, F.; STARK, H. A flowing pair of particles in inertial microfluidics. Soft Matter, 2019. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2019/sm/c8sm02476f Acesso em 18/11/2025.

ORBAY, S.; SANYAL, A. Molecularly Imprinted Polymeric Particles Created Using Droplet-Based Microfluidics: Preparation and Applications. Micromachines (Basel), v. 14, n. 4, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/4/763. Acesso em 18/11/2025.

GURKAN, U. A. et al. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies. Lab Chip, v. 24, n. 7, 2024. Disponível em: https://encurtador.com.br/gHlF Acesso em 18/11/2025.

KAVVAS, M. L.; ERCAN, A. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Sci Rep, v.12, n. 1, 2022. Disponível em: https://www.nature.com/articles/s41598-022-20911-3 Acesso em 18/11/2025.

JIANG, J. et al. Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets. ACS Appl Mater Interfaces, v. 9, n. 7, 2022. Disponível em: https://www.nature.com/articles/s41598-022-20911-3 Acesso em 18/11/2025.

SOTOUDEGAN, M. S. Et al. Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices. Lab Chip, v. 19, n. 22, 2019. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2019/lc/c9lc00822e Acesso em 18/11/2025.

DE LOS SANTOS-RAMIREZ, J. M. et al. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. Analyst. v. 149, n. 14, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/an/d4an00538d Acesso em 18/11/2025.

FERNÁNDEZ-MATEO, R. et al. Concentration-polarization electroosmosis for particle fractionation. Lab Chip, v. 24, n. 11, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00081a Acesso em 18/11/2025.

LI, T. et al. Fabrication of Patterned Magnetic Particles in Microchannels and Their Application in Micromixers. Biosensors (Basel), v. 14, n. 9, 2024. Disponível em: https://www.mdpi.com/2079-6374/14/9/408 Acesso em 18/11/2025.

HAN, Y. et al. Modern microelectronics and microfluidics on microneedles. Analyst, v. 148, n. 19, 2023. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/an/d3an01045g Acesso em 18/11/2025.

PARSLEY, N. C.; SMYTHERS, A. L.; Hicks, L. M. Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements. Front Cell Infect Microbiol, v. 10, 2020. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33042872/ Acesso em 18/11/2025.

ZHEN, W.; JIANG, X. Synthesizing Living Tissues with Microfluidics. Acc Chem Res, v. 51, n. 12, 2018. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30456942/ Acesso em 18/11/2025.

VAN LOO, B. et al. Mass production of lumenogenic human embryoid bodies and functional cardiospheres using in-air-generated microcapsules. Nat Commun, v. 14, n. 1, 2023. Disponível em: https://www.nature.com/articles/s41467-023-42297-0 Acesso em 18/11/2025.

VLADISALJEVIĆ, G. T. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. Micromachines (Basel), v. 15, n. 8, 2024. Disponível em: https://www.mdpi.com/2072-666X/15/8/971 Acesso em 18/11/2025.

WANG, X. et al. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res, v. 9, n. 1, 2022. Disponível em: https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-022-00374-3 Acesso em 18/11/2025.

SIDDIQUI, S. A. et.al. Implementing fermentation technology for comprehensive valorisation of seafood processing by- products: A critical review on recovering valuable nutrients and enhancing utilisation. Crit Rev Food Sci Nutr, v. 65, n. 5, 2023. Disponível em: https://www.tandfonline.com/doi/full/10.1080/10408398.2023.2286623 Acesso em 18/11/2025.

YAN, C. et al. Microencapsulation for Food Applications: A Review. ACS Appl Bio Mater, v. 5, n. 12, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acsabm.2c00673 Acesso em 18/11/2025.

FILIPPIDOU M. K.; CHATZANDROULIS, S. Microfluidic Devices for Heavy Metal Ions Detection: A Review. Micromachines (Basel), v. 14, n. 8, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/8/1520 Acesso em 18/11/2025.

GUPTA, P.; TOKSHA B.; RAHAMAN, M. A. Critical Review on Hydrogen Based Fuel Cell Technology and Applications. Chem Rec, v. 24, n. 1, 2023 Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/tcr.202300295 Acesso em 18/11/2025.

ZHAI, K. The changing landscape of semiconductor manufacturing: why the health sector should care. Front Health Serv, v. 3, 2023. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10292744/ Acesso em 18/11/2025.

DONG, Y. et al. Formation of Droplets of Shear-Thinning Non- Newtonian Fluids in Asymmetrical Parallelized Microchannels. Langmuir, v. 39, n. 6, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.2c02736 Acesso em 18/11/2025.

PATTANAYAK, P. et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluid Nanofluidics, v. 25, n. 12, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34720789/ Acesso em 18/11/2025.

LIU, D. et al. Single-cell droplet microfluidics for biomedical applications. Analyst, v. 147, n. 11, 2022. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2022/an/d1an02321g Acesso em 18/11/2025.

OZCELIK, D. et al. Optofluidic bioanalysis: fundamentals and applications. Nanophotonics, v. 6, n. 4, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29201591/ Acesso em 18/11/2025.

LIAO, J. et al. Mirrored transformation optics. Opt Lett, v. 49, n. 4, 2024. Disponível em: https://opg.optica.org/viewmedia.cfm?r=1&rwjcode=ol&uri=ol-49-4-907&html=true Acesso em 18/11/2025.

ZIEBEHL, A. et al. Parametric multiphysics study of focus-variable silicone lenses. Appl Opt, v. 62, n. 30, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/38038081/ Acesso em 18/11/2025.

KANG, M. et al. A Molecular-Switch-Embedded Organic Photodiode for Capturing Images against Strong Backlight. Adv Mater, v. 34, n. 17, 2022. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202200526 Acesso em 18/11/2025.

LIANG, L. et al. Label-free single-cell analysis in microdroplets using a light- scattering-based optofluidic chip. Biosens Bioelectron, v. 253, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0956566324001532 Acesso em 18/11/2025.

AVCI, M. B.; YASAR, S. D.; CETIN, A. E. An optofluidic platform for cell-counting applications. Anal Methods, v. 15, n. 18, 2023. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/ay/d3ay00344b Acesso em 18/11/2025.

VILLARREAL-LUCIO, D. S. et al. Molecularly imprinted polymers for environmental adsorption applications. Environ Sci Pollut Res Int, v. 29, n. 60, 2022 Disponível em: https://link.springer.com/article/10.1007/s11356-022-24025-1 Acesso em 18/11/2025.

WANG, Z. et al. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. Small Methods, v. 7, n. 12, 2023. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202300042 Acesso em 18/11/2025.

ABEDI, S. et al. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence. Journal Colloid Interface Sci, v. 533, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0021979718309652 Acesso em 18/11/2025.

NAGLIČ, P. et al. Optical properties of PlatSil SiliGlass tissue-mimicking phantoms. Biomed Opt Express, v. 11, n. 8, 2020 Disponível em: Acesso em 18/11/2025.

HUANG, K. et al. Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles. Adv Mater, v. 34, n. 14, 2022. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202107962 Acesso em 19/11/2025.

CHEN, R. et al. Patterning an Erosion-Free Polymeric Semiconductor Channel for Reliable All-Photolithography Organic Electronics. Journal Phys Chem Lett, v. 13, n. 33, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jpclett.2c01982 Acesso em 19/11/2025.

JANE, F. et al. Embedding of Ultrathin Chips in Highly Flexible, Photosensitive Solder Mask Resist. Micromachines (Basel), v. 12, n. 8, 2021. Disponível em: https://www.mdpi.com/2072-666X/12/8/856 Acesso em 19/11/2025.

SHAHBAZ, M.; BUTT M. A.; PIRAMIDOWICZ, R. Breakthrough in Silicon Photonics Technology in Telecommunications, Biosensing, and Gas Sensing. Micromachines (Basel), v. 14, n. 8, 2023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37630173/ Acesso em 19/11/2025.

XU, Z. et al. An investigation of methods to enhance adhesion of conductive layer and dielectric substrate for additive manufacturing of electronics. Sci Rep, v. 14, n. 1, 2024. Disponível em: https://www.nature.com/articles/s41598-024-61327-5 Acesso em 20/11/2025.

JINDAL, V; SUGUNAKAR, V; GHOSH, S. Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing. Rev Sci Instrum, v. 93, n. 2, 2022. Disponível em: https://encurtador.com.br/pjWx Acesso em 20/11/2025.

MÁRTIL DE LA PLAZA, Ignacio. Microelectrónica: la história de la mayor revolución silenciosa del siglo XX. Madrid: Universidad Complutense, Ediciones Complutense, 2018. 179p.

KOSHELEV, A. et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. Opt Lett, v. 41, n. 15, 2016. Disponível em: https://opg.optica.org/ol/abstract.cfm?uri=ol-41-15-3423 Acesso em 21/11/2025.

NIKON BUSINESS. Immersion lithography technology supports leading-edge semiconductor production. [s.l.]: Nikon, [s.d.]. Disponível em: https://www.nikon.com/business/semi/technology/story04.html Acesso em 21/11/2025.

ZHAO, R. et al. Machine learning in electron beam lithography to boost photoresist formulation design for high-resolution patterning. Nanoscale, v. 16, n. 8, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr04819e Acesso em 21/11/2025

BAEK, D. et al. Nanotechnology for Bioapplications. In: Lithography Technology for Micro- and Nanofabrication. Singapure: Springer, 2021. p. 217-233.

CHIRCOV, C; GRUMEZESCU, A. M. Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines (Basel), v. 13, n. 2, 2022. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35208289/ Acesso em 21/11/2025.

SCIBERRAS, T. et al. Thermo-Mechanical Fluid- Structure Interaction Numerical Modelling and Experimental Validation of MEMS Electrothermal Actuators for Aqueous Biomedical Applications. Micromachines (Basel), v. 14, n. 6, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/6/1264 Acesso em 21/11/2025.

BHUSHAN, Bharat. Encyclopedia of Nanotechnology, v. 1. Dordrecht, The Netherlands: Springer, 2012. 2.868p.

PARK, S. Y. et al. Patterning Quantum Dots via Photolithography: A Review. Adv Mater, v. 35, n. 41, Disponível em: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202300546 Acesso em 21/11/2025.

SMALLWOOD, D. C. et al. Methods for latent image simulations in photolithography with a polychromatic light attenuation equation for fabricating VIAs in 2.5D and 3D advanced packaging architectures. Microsyst Nanoeng, v. 7, n. 39, 2021. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34567753/ Acesso em 21/11/2025.

ZHANG, S. et al. Chemically Amplified Molecular Glass Photoresist Regulated by 2-Aminoanthracene Additive for Electron Beam Lithography and Extreme Ultraviolet Lithography. ACS Omega, v. 8, n. 30, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acsomega.2c07711 Acesso em 21/11/2025.

LU, H. et al. Characterisation of engineered defects in extreme ultraviolet mirror substrates using lab-scale extreme ultraviolet reflection ptychography. Ultramicroscopy, v. 249, 2023. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0304399123000372 Acesso em 21/11/2025.

SERRANO, D. R. et al. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics, v. 15, n. 2, 2023. Disponível em: https://www.mdpi.com/1999-4923/15/2/313 Acesso em 21/11/2025.

SIOMA, M. 3D printed electronics with nanomaterials. Nanoscale, v. 15, n. 12, 2023; Disponível em: https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr06771d Acesso em 21/11/2025.

Madhu NR, Erfani H, Jadoun S, Amir M, Thiagarajan Y, Chauhan NPS. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review. International Journal Adv Manuf Technol, v. 122, 2022. Disponível em: https://link.springer.com/article/10.1007/s00170-022-10048-y Acesso em 21/11/2025.

LUO, C. et al. Bonding widths of Deposited Polymer Strands in Additive Manufacturing. Materials (Basel), v. 14, n. 4, 2021. Disponível em: https://www.mdpi.com/1996-1944/14/4/871 Acesso em 21/11/2025.

SIRBUBALO, M. et al. 3D Printing — A “Touch-Button” Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics, v. 13, n. 7, 2021; Disponível em: https://doi.org/10.3390/pharmaceutics13070924 Acesso em 21/11/2025.

ZHANG, P. et al. Development of multiple structured extended-release tablets via hot melt extrusion and dual-nozzle fused deposition modeling 3D printing. International Journal Pharm, v. 653, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S037851732400139X Acesso em 21/11/2025.

PRZEKOP, R. E. et al. Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements. Applied Sciences, v. 13, n. 13, 2023; Disponível em: https://doi.org/10.3390/app13137393 Acesso em 21/11/2025.

DEMIR, E.; DUYGUN, İ. K.; BEDELOĞLU, A. The Mechanical Properties of 3D-Printed Polylactic Acid/Polyethylene Terephthalate Glycol Multi-Material Structures Manufactured by Material Extrusion. 3D Print Addit Manuf, v. 11, n. 1, 2024. Disponível em: Acesso em 21/11/2025.

CHO, Y. et al. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape. Micromachines (Basel), v.14, n. 1, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/1/223 Acesso em 21/11/2025.

NTONE, E. et. al. The emulsifying ability of oleosomes and their interfacial molecules. Colloids Surfaces B: Biointerfaces, v. 229, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0927776523003545 Acesso em 21/11/2025.

SHARMA, T. et al. Investigating the Vapor-Phase Adsorption of Aroma Molecules on the Water-Vapor Interface using Molecular Dynamics Simulations. Langmuir, v. 39, n. 49, 2023. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.3c02531 Acesso em 21/11/2025.

LI, Y. et al. A Pickering emulsion stabilized by Chitosan-g- Poly(N-vinylcaprolactam) microgels: Interface formation, stability and stimuli-responsiveness. Carbohydr Polym, v. 332, 2024. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0144861724001747 Acesso em 21/11/2025.

JIANG, T. et al. Effective colloidal emulsion droplet regulation in flow- focusing glass capillary microfluidic device via collection tube variation. RSC Adv, v. 14, n. 5, 2024. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2024/ra/d3ra08561a Acesso em 21/11/2025.

PETRUZZELLIS, I. et al. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. Micromachines (Basel), v. 15, n. 9, 2024. Disponível em: https://www.mdpi.com/2072-666X/15/9/1135 Acesso em 21/11/2025.

HENGOJU, S. et al. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens Bioelectron, v. 200, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0956566321009477 Acesso em 21/11/2025.

SCHIANTI, J. N. et al. Real Time Water-In-Oil Emulsion Size Measurement in Optofluidic Channels. Sensors (Basel), v. 22, n. 13, 2022. Disponível em: https://www.mdpi.com/1424-8220/22/13/4999 Acesso em 21/11/2025.

VILA-PLANAS, J. et al. Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, v. 6, 2011. Disponível em: https://www.nature.com/articles/nprot.2011.383 Acesso em 21/11/2025.

SUN, X. et al. Small All-Range Lidar for Asteroid and Comet Core Missions. Sensors (Basel), v. 21, n. 9, 2021. Disponível em: https://www.mdpi.com/1424-8220/21/9/3081 Acesso em 21/11/2025.

DANNHAUSER, D. et al. Optical signature of erythrocytes by light scattering in microfluidic flows. Lab Chip, v. 15, n. 16, 2015. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2015/lc/c5lc00525f Acesso em 21/11/2025.

SONG, J. et al. Droplet Navigation by Photothermal Pumping in an Optofluidic System. Langmuir, v.38, n. 37, 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.langmuir.2c02108 Acesso em 21/11/2025.

WEI, B. et al. Monolithic 3D phase profile formation in glass for spatial and temporal control of optical waves. Opt Express, v. 30, n. 14, 2022. Disponível em: https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-14-24822 Acesso em 21/11/2025.

GHAZNAVI, A.; XU, J.; Hara, S. A. A Non-Sacrificial 3D Printing Process for Fabricating Integrated Micro/Mesoscale Molds. Micromachines (Basel), v. 14, n. 7, 2023. Disponível em: https://www.mdpi.com/2072-666X/14/7/1363 Acesso em 21/11/2025.

Downloads

Publicado

2025-12-15

Como Citar

SANTOS, R. F. dos; BORGES, P. C. R. Do laboratório à indústria: medição rápida e de baixo custo de emulsões em tempo real. Revista JRG de Estudos Acadêmicos , Brasil, São Paulo, v. 8, n. 19, p. e082792, 2025. DOI: 10.55892/jrg.v8i19.2792. Disponível em: http://www.revistajrg.com/index.php/jrg/article/view/2792. Acesso em: 16 dez. 2025.

ARK