Thermo-Electric and Magnetic Effects of the Monolayers 1T’-WTe2 and 1T’-RuWTe2 TMD from Computational Simulation

Authors

DOI:

https://doi.org/10.55892/jrg.v7i15.1362

Keywords:

Monolayers, TMDs, DFT, Termo-electric effects

Abstract

Transition metal dichalcogenides (TMDs) are chemical compounds consisting of two chalcogen atoms (Te, Se or S) connected by covalent bonds to a transition metal atom, having the structural form XY2. In this research, modeling and computer simulation were carried out, followed by an analysis of the physical properties of monoclinic monolayers (1T’) of tungsten ditelluride (WTe2) and tungsten-ruthenium ditelluride (RuWTe2) TMDs, the latter replacing a W atom with a Ru atom in the primitive cell, from density functional theory (DFT) formalism, mainly considering the generalized gradient approximation (GGA) and the HSE06 hybrid functional for bandgap estimation, from nanostructures in their minimum energy state. The lattice parameters of the proposed 1T’-RuWTe2 TMD are compatible with the 1T’-WTe2 TMD already known in literature. The estimated bandgap for 1T’-RuWTe2 was 0.50 and 0.35 eV, for the spin up and down bands, respectively, characterizing it as a semiconductor, while 1T’-WTe2 showed conductor characteristics. As for their magnetic nature, these TMDs showed ferromagnetism, with 1T’-RuWTe2 showing an apparent tendency towards ferrimagnetism. The density of partial states, thermodynamic potentials and thermal capacity were also analyzed, highlighting the potential for synthesis and estimation of new technologies such as thermo-electric and magnetic nanodevices based on 1T’-RuWTe2 TMD.

Downloads

Download data is not yet available.

Author Biographies

Marcus Vinicius Durans Pereira, State University of Maranhão

Graduando em Física; Mestre em Engenharia e Ciências Aeroespaciais.

Pedro Afonso da Silva Batista, State University of Maranhão

Graduado em Física.

Caleb Nathan Navis, State University of Maranhão

Graduado em Engenharia Química; Mestre em Química.

Edvan Moreira, State University of Maranhão

Graduado em Física. Mestre em Física. Doutor em Física.

David Lima Azevedo, University of Brasília

Graduado em Física; Mestre em Física; Doutor em Física.

References

Abdullahi, Yusuf Zuntu. Electronic and magnetic properties of RuO2 monolayer: DFT+ U investigation. Computational Condensed Matter, v. 29, p. e00614, 2021. DOI: 10.1016/j.cocom.2021.e00614

Ashcroft, N. W., Mermin, N. D. Solid state physics. Cengage Learning, 2022.

Bletskan, D. I., Vakulchak, V. V., Kabatsii, V. M. Electronic structure of sodium thiogermanate. Open Journal of Inorganic Non-metallic Materials, v. 5, n. 02, p. 31, 2015. DOI: 10.4236/ojinm.2015.52004

Brown, Bruce E. The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallographica, v. 20, n. 2, p. 268-274, 1966. DOI: 10.1107/S0365110X66000513

Carvalho, R. C., Mendonça, M. E. V., Tavares, M. S., Moreira, E., Azevedo, D. L. Optoelectronic and thermodynamic properties, infrared and Raman spectra of NbO2 and Nb2O5 from DFT formalism. Journal of Physics and Chemistry of Solids, v. 163, p. 110549, 2022. DOI: 10.1016/j.jpcs.2021.110549

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., Payne, M. C. First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials, v. 220, n. 5-6, p. 567-570, 2005. DOI: 10.1524/zkri.220.5.567.65075

Geim, A. K., Novoselov, K. S. The rise of graphene. Nature materials, v. 6, n. 3, p. 183-191, 2007. DOI: 10.1038/nmat1849

Lu, Xin et al. Strain-induced two-dimensional topological insulators in monolayer 1T′-RuO2. Journal of Physics: Condensed Matter, v. 34, n. 47, p. 475502, 2022. DOI: 10.1088/1361-648X/ac965b

Mathias, A. L. R., Moucherek, F. M. O., Santos, W. O., Costa, F. S., Tavares, M. S., Moreira, E., & Azevedo, D. L. Two-dimensional dichalcogenides of type XY2 (X= Mo, W; Y= S, Se): A DFT study of the structural, optoelectronic, thermodynamic properties, infrared, and Raman spectra. Journal of Materials Research, v. 38, n. 8, p. 2072-2083, 2023. DOI: 10.1557/s43578-023-00947-5

Moreira, E.; Freitas, D.; Azevedo, D. Nanoestrutura 2-D do Dissulfeto de Molibdênio: Um Estudo via Teoria do Funcional da Densidade. OmniScriptum GmbH & Co. KG – Riga Letónia, 2020. 92p.

Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters, v. 77, n. 18, p. 3865, 1996. DOI: 10.1103/PhysRevLett.77.3865

Pfrommer, B. G., Côté, M., Louie, S. G., Cohen, M. L. Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, v. 131, n. 1, p. 233-240, 1997. DOI: 10.1006/jcph.1996.5612

Santos, W. O., Moucherek, F. M. O., Dias, A. C., Moreira, E., Azevedo, D. L. 1T’-RuO2 monolayer: First-principles study of excitonic, optoelectronic, vibrational, and thermodynamic properties. Journal of Materials Research, v. 38, n. 15, p. 3677-3689, 2023. DOI: 10.1557/s43578-023-01091-w

Santos, W. O., Moucherek, F. M. O., Dias, A. C., Moreira, E., Azevedo, D. L. Structural, optoelectronic, excitonic, vibrational, and thermodynamic properties of 1T’-OsO2 monolayer via ab initio calculations. Journal of Applied Physics, v. 134, n. 7, 2023. DOI: 10.1063/5.0156245

Santos, W. O., Pereira, M. V. D., Frazão, N. F., Moreira, E., Azevedo, D. L. 1T’-RuWTe2 hybrid monolayer as a novel magnetic material: A first principles study. Materials Today Communications, v. 38, p. 107784, 2024. DOI: 10.1016/j.mtcomm.2023.107784

Tang, S., Zhang, C., Wong, D., Pedramrazi, Z., Tsai, H. Z., Jia, C., ... and Shen, Z. X. Quantum spin Hall state in monolayer 1T'-WTe2. Nature Physics, v. 13, n. 7, p. 683-687, 2017. DOI: 10.1038/nphys4174

Torun, E., Sahin, H., Cahangirov, S., Rubio, A., and Peeters, F. M. Anisotropic electronic, mechanical, and optical properties of monolayer WTe2. Journal of Applied Physics, v. 119, n. 7, 2016. DOI: 10.1063/1.4942162

Yang, J., Jin, Y., Xu, W., Zheng, B., Wang, R., and Xu, H. Oxidation-induced topological phase transition in monolayer 1T′-WTe2. The journal of physical chemistry letters, v. 9, n. 16, p. 4783-4788, 2018. DOI: 10.1021/acs.jpclett.8b01999

Yin, X., Tang, C. S., Zheng, Y., Gao, J., Wu, J., Zhang, H., ... and Wee, A. T. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-) metallic phases. Chemical Society Reviews, v. 50, n. 18, p. 10087-10115, 2021. DOI: 10.1039/D1CS00236H

Yu, P., Lin, J., Sun, L., Le, Q. L., Yu, X., Gao, G., ... and Liu, Z. Metal–Semiconductor Phase‐Transition in WSe2 (1‐x) Te2x Monolayer. Advanced Materials, v. 29, n. 4, p. 1603991, 2017. DOI: 10.1002/adma.201603991

Zulfiqar, M., Zhao, Y., Li, G., Li, Z., and Ni, J. Intrinsic thermal conductivities of monolayer transition metal dichalcogenides MX2 (M= Mo, W; X= S, Se, Te). Scientific Reports, v. 9, n. 1, p. 4571, 2019. DOI: 10.1038/s41598-019-40882-2

Published

2024-08-12

How to Cite

PEREIRA, M. V. D.; BATISTA, P. A. da S.; NAVIS, C. N.; MOREIRA, E.; AZEVEDO, D. L. Thermo-Electric and Magnetic Effects of the Monolayers 1T’-WTe2 and 1T’-RuWTe2 TMD from Computational Simulation. JRG Journal of Academic Studies, Brasil, São Paulo, v. 7, n. 15, p. e151362, 2024. DOI: 10.55892/jrg.v7i15.1362. Disponível em: http://www.revistajrg.com/index.php/jrg/article/view/1362. Acesso em: 2 may. 2025.

ARK